Abstract
The frequency content of volcanogenic seismicity is often used to classify events and their spatial and temporal progression is then used to map subsurface volcanic processes. The progression of volcano-seismic events and associated source processes also plays a critical role in eruption forecasting. Here we develop and evaluate a computerized methodology for characterizing volcano-seismic event types using Frequency Index and Average Peak Frequency. We apply and test this technique at Great Sitkin Volcano, Alaska, classifying over 9000 hypocenters between 1999 and 2023. This 24-year time span covers periods of seismic quiescence, earthquake activity on nearby tectonic (bookshelf) faults, precursory unrest from 2016 to 2021, and the explosive onset in May 2021 of the ongoing effusive eruption. We use the spatial and temporal evolution of classified event types to map the active volcanic and tectonic processes, develop a conceptual model of the subsurface magmatic system, and perform a retrospective analysis of eruption forecasts at Great Sitkin Volcano between 2016 and the present. The classification and progression of hypocenters suggests the subsurface Great Sitkin Volcano magmatic system consists of a mid- to lower- crustal source zone between 10 and 40 km depth and an upper crustal magma storage area between −1 and 10 km depth (hypocenter depth is referenced to sea level and negative depths reflect height above sea level). The earliest precursors occurred in July 2016 and consisted of deep long-period and volcano-tectonic earthquakes at mid-crustal depths suggesting the subsequent unrest and eruption were triggered by a deeper intrusion of magma. This mid-crustal seismic activity was immediately followed by the onset upper-crustal long-period events and volcano-tectonic earthquakes VTs suggesting a strong linkage between the shallow and deeper portions of the magmatic system. The upper crustal area was likely capped by the 1974 lava dome until the magmatic explosion on May 26, 2021.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.