Abstract

Repetitive gravity surveys at Pacaya Volcano from 1975 to 1979 revealed time-dependent changes in the gravity field, which although related to volcanic activity, could not be uniquely attributed to elevation changes or mass redistributions because elevation control was lacking. Elevation control was established in July 1979 using precision leveling. Relative elevation and gravity measurements in June and July of 1979, January 1980 and June 1980 indicate concurrent gravity and elevation changes contemporaneous with variations in eruptive activity. From June 1979 to January 1980, while fumarolic activity was dominant, relative to the most remote station, the volcano deflated by at least 195 mm and the gravity field increased by up to 221 μgal. From January 1980 to June 1980, preceding a Strombolian eruption beginning about June 1980, the volcano inflated by at least 19 mm and the gravity field decreased by up to 231 μgal. Gravity change maps for the intervals of January 1978 to June 1979, June 1979 to January 1980, and January 1980 to June 1980 show areas subject to repeated positive and negative gravity change. Some of those areas coincide with areas of maximum elevation change observed in the June 1979–January 1980 and January 1980–June 1980 intervals; however, gravity changes were observed in areas lacking elevation changes. Adjusting observed gravity changes for elevation changes using a free-air value of −3.086 μgal/cm does not substantially alter the pattern, position, or amplitude of the gravity changes. The relationship between gravity changes, elevation changes, and volcanic activity requires a mechanism producing gravity decreases with little inflation during times of increased eruptive activity, and producing gravity increases with subsidence during times of declining eruptive activity. Such a pattern of changes could be produced by a near-surface magma body in which high-density degassed magma is displaced volume for volume by low-density vesiculated magma during time of increased eruptive activity, and in which loss of gasses by fumarolic activity produces a density increase and a reduction in volume of the magma body during periods of declining eruptive activity. Such a pattern of changes could also be induced by a low-density, vesiculated magma body moving upward in the volcanic pile by piecemeal stoping where the high-density rocks of the volcano are replaced on a volume for volume basis by low-density magma during periods of increasing eruptive activity; and by later density increases and magma body volume reductions accompanying devolatilization and devesiculation during periods of declining eruptive activity. Simple density change and density contrast models involving shallow magma bodies at depths of 100 to 200 m indicate density changes or contrasts of about 0.4 g/cm 3 could produce the gravity changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.