Abstract

Two isomeric binuclear ligands PBTPA and MBTPA and their copper(II) complexes were prepared and examined for hydrolysis of a model phosphodiester substrate: bis(p-nitrophenyl)phosphate. A bell-shaped pH vs rate profile, which is in agreement with one mechanism proposed for bimetallonucleases/phosphatases, was observed for the binuclear complex of copper(II) and PBTPA. At pH 8.4, a maximum rate of 1.14 x 10(-6) s(-1)--more than 10(4)-fold over uncatalyzed reactions--was achieved. However, the analogous complex of MBTPA did not show significant rate enhancement. The binuclear complex of copper(II) and PBTPA also showed 10-fold acceleration over mononuclear complex of copper(II) and tris(2-pyridylmethyl)amine (TPA) catalyzed reaction. A phage phiX174 DNA assay showed that the complex of copper(II) and PBTPA promoted supercoiled phage phiX174 DNA relaxation under both aerobic and anaerobic conditions, in contrast to the hydrolytic inactivity of the mononuclear complex of copper(II) and TPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.