Abstract

A new unsymmetrical end-off, aminomethylated N-methylpiperazine and aminomethylated diethanolamine armed binucleating ligand, 2-[bis(2-hydroxyethyl)aminomethyl]-6-[(4-methylpiperazin-1-yl)methyl]-4-formylphenol (HL), was synthesized by following sequential aromatic Mannich reactions. Mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes were synthesized and characterized by elemental and spectral analysis. The EPR spectrum of the mononuclear copper complex shows four hyperfine splittings and the binuclear complex shows a broad signal due to anti-ferromagnetic interaction. The room temperature magnetic moment of the mono and binuclear copper complexes are 1.72 and 2.68 BM, respectively. Variable temperature magnetic moment study of the binuclear copper(II) complex shows weak antiferromagnetic coupling (−2J value, 21 cm−1). The mononuclear Ni(II) complex is square planar and diamagnetic. The six-coordinate binuclear Ni(II) complex shows a magnetic moment of 3.06 BM. Electrochemical studies of the complexes reveal that all mononuclear complexes show a single irreversible one-electron reduction wave and the binuclear complexes show two irreversible one-electron reduction waves in the cathodic region. Catecholase activity of copper(II) complexes using pyrocatechol as a model substrate and the hydrolysis of 4-nitrophenylphosphate using copper(II), nickel(II) and zinc(II) complexes as catalysts showed that binuclear complexes have higher rate constants than corresponding mononuclear complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.