Abstract

SU-8 micro-cantilever arrays consisting of V- and M-shaped structures fabricated using a simplified single hard mask step. Bending tests were performed under similar peak loads (ranging 2–10 µN), with thickness ranging between micron (3.5 µm) and sub-micron (0.2 µm) scales. Various mechanical properties such as stiffness and hysteresis are determined from the load versus deflection curves. When the thickness of the V-shaped beam is decreased from 2 µm to 0.2 µm, the stiffness increases by a factor of 2.7, which is in contradiction with the classical beam theory according to which the stiffness for 0.2 µm beam should be three orders of magnitude less than that of 2 µm beam. Micropolar elasticity theory with a variable-intrinsic length scale (thickness dependant) is used to explain such an anomalous response. Experimentally obtained stiffness of two M-shaped beams of thickness 2 µm and 0.2 µm are almost identical. Reason behind this contradictory result is that the thicker beam has a residual strain with a large plastic deformation which usually increases the cross-linking network density, leading to increase in elastic modulus, hardness and thus stiffness of polymers. But the thinner beam has undergone an elastic deformation. The size effect of V- and M-shaped cantilever beams is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call