Abstract
Markov chain Monte Carlo (MCMC) algorithms are sampling methods for intractable distributions. In this paper, we propose and investigate algorithms that improve the sampling process from multi-dimensional real-coded spaces. We present MCMC algorithms that run a population of samples and apply recombination operators in order to exchange useful information and preserve commonalities in highly probable individual states. We call this class of algorithms Evolutionary MCMCs (EMCMCs). We introduce and analyze various recombination operators which generate new samples by use of linear transformations, for instance, by translation or rotation. These recombination methods discover specific structures in the search space and adapt the population samples to the proposal distribution. We investigate how to integrate recombination in the MCMC framework to sample from a desired distribution. The recombination operators generate individuals with a computational effort that scales linearly in the number of dimensions and the number of parents. We present results from experiments conducted on a mixture of multivariate normal distributions. These results show that the recombinative EMCMCs outperform the standard MCMCs for target distributions that have a nontrivial structural relationship between the dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.