Abstract
We study a geometric version of the Red–Blue Set Cover problem originally proposed by Carr et al. (2000) [1]: given a red point set, a blue point set, and a set of objects, we want to choose a subset of objects to cover all the blue points, while minimizing the number of red points covered. We prove that the problem is NP-hard even when the objects are unit squares in 2D, and we give the first polynomial-time approximation scheme (PTAS) for this case. The technique we use simplifies and unifies previous PTASs for the weighted geometric set cover problem and the unique maximum coverage problem for 2D unit squares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.