Abstract
Let [Formula: see text] and [Formula: see text] be two disjoint sets of red points and blue points, respectively, in the plane in general position. Assign a weight [Formula: see text] to each red point and a weight [Formula: see text] to each blue point, where [Formula: see text] and [Formula: see text] are positive integers. Define the weight of a region in the plane as the sum of the weights of red and blue points in it. We give necessary and sufficient conditions for the existence of a line that bisects the weight of the plane whenever the total weight [Formula: see text] is [Formula: see text], for some integer [Formula: see text]. Moreover, we look closely into the special case where [Formula: see text] and [Formula: see text] since this case is important to generate a weight-equitable subdivision of the plane. Among other results, we show that for any configuration of [Formula: see text] with total weight [Formula: see text], for some integer [Formula: see text] and odd integer [Formula: see text], the plane can be subdivided into [Formula: see text] convex regions of weight [Formula: see text] if and only if [Formula: see text]. Using the proofs of the main result, we also give a polynomial time algorithm in finding a weight-equitable subdivision in the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Geometry & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.