Abstract
We study a variety of geometric versions of the classical knapsack problem. In particular, we consider the following "fence enclosure" problem: given a setS ofn points in the plane with valuesvi ź 0, we wish to enclose a subset of the points with a fence (a simple closed curve) in order to maximize the "value" of the enclosure. The value of the enclosure is defined to be the sum of the values of the enclosed points minus the cost of the fence. We consider various versions of the problem, such as allowingS to consist of points and/or simple polygons. Other versions of the problems are obtained by restricting the total amount of fence available and also allowing the enclosure to consist of at mostM connected components. When there is an upper bound on the length of fence available, we show that the problem is NP-complete. We also provide polynomial-time algorithms for many versions of the fence problem when an unrestricted amount of fence is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.