Abstract
Archaea are a domain of microbial life whose member species play a critical role in the global carbon cycle, climate regulation, the human microbiome, and persistence in extreme habitats. In particular, hypersaline-adapted archaea are important, genetically tractable model organisms for studying archaeal genetics, genomics, and biochemistry. As the archaeal research community grows, keeping track of the genetic integrity of strains of interest is necessary. In particular, routine genetic manipulations and the common practice of sharing strains between labs allow mutations to arise in lab stocks. If these mutations affect cellular processes, they may jeopardize the reproducibility of work between research groups and confound the results of future studies. In this work, we examine DNA sequences from 60 strains across two species of archaea. We identify shared and unique mutations occurring between and within strains. Independently, we trace the lineage of each strain, identifying which genetic manipulations lead to observed off-target mutations. While overall divergence across labs is minimal so far, our work highlights the need for labs to continue proper strain husbandry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have