Abstract

The rapid development of insecticide resistance has hampered the use of Bacillus thuringiensis (Bt), a widely used bio-pesticide. Plutella xylostella (L.) is a globally distributed lepidopteran pest of cruciferous vegetables and has developed severe field resistance to the Bt toxin. Vacuolar H+-ATPases (VHA) are multi-subunit complexes and participate in multiple physiological processes. However, the characterization and functional studies of VHA genes are lacking in insects. This study performed a genome-wide analysis and identified 35 VHA gene family members divided into 15 subfamilies in P. xylostella. We cloned a V-ATPase subunit G gene, PxVHA-G1, in our previous midgut transcriptome profiles. Quantitative reverse transcriptase-polymerase chain reaction results showed that PxVHA-G1 was upregulated in the Cry1S1000-resistant strain than in the G88-susceptible strain, and its expression profile revealed that the midgut, Malpighian tubules, and larva stages generally showed high expression levels. RNAi-mediated knockdown of the PxVHA-G1 gene increased the susceptibility of P. xylostella (G88 and Cry1S1000) to Cry1Ac toxin. Our study is the first to explore the role of PxVHA-G1 on regulating Cry1Ac toxicity in P. xylostella, thus, providing new insights into the role of VHAs in the development of Cry1Ac resistance and sustainable development of pest management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call