Abstract

BackgroundBeta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia.MethodsSalmonella isolates with reduced susceptibility to beta-lactams (n = 43) were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29) for mutations in the quinolone resistance determining region (QRDR) as well as plasmid mediated quinolone resistance (PMQR) genes using PCR and sequencing.ResultsBeta-lactamase genes (bla) were detected in 34 (79.1%) of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7%) of the isolates, majority being TEM-1 (24, 72.7%) followed by TEM-57, (10, 30.3%). The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly) as well as parC (Thr57-Ser + Ser80-Ile) subunits of the quinolone resistance determining region (QRDR) were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4) and Ser83-Tyr (n = 1) were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe) in the parC gene. Plasmid mediated quinolone resistance (PMQR) genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6%) were also resistant to at least one of the beta-lactam antimicrobials.ConclusionAcquisition of blaTEM was the principal beta-lactamase resistance mechanism and mutations within QRDR of gyrA and parC were the primary mechanism for resistance to quinolones. Further study on extended spectrum beta-lactamase and quinolone resistance mechanisms in other gram negative pathogens is recommended.

Highlights

  • Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens

  • Bacterial isolates Non-typhoidal Salmonella strains investigated in the current study were isolated from feces of food animals in Addis Ababa and surrounding districts of Oromia region namely: Ada, Barake, Sebeta and Sululta

  • Antimicrobial susceptibility testing, serotyping and phage typing Susceptibility of each isolate to beta-lactam and quinolone antimicrobials was determined using disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI)

Read more

Summary

Introduction

Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. Salmonellosis in humans is caused by several serovars belonging to Salmonella enterica subspecies enterica. Infection by Salmonella causes two forms of diseases; typhoid fever, a febrile illness caused by a few host specific serovars such as Salmonella enterica subspecies enterica serovar Typhi Paratyphi A, while the majority of Salmonella serovars cause nontyphoidal salmonellosis characterized by self limiting gastoentritis and occasional invasive salmonellosis in immunocompromised, young and elderly patients. Infection with non-typhoidal Salmonella (NTS) serovars is one of the leading causes of foodborne illnesses worldwide [1]. NTS infection is commonly associated with consumption of contaminated food of animal origin such as poultry products, beef and pork as well as contact with infected animals [2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call