Abstract
Using a double affine transformation, the classical buckling equation for specially orthotropic plates and the corresponding virtual work theorem are presented in a particularly simple fashion. These dual representations are characterized by a single material constant, called the generalized rigidity ratio, whose range is predicted to be the closed interval from 0 to 1 (if this prediction is correct then the numerical results using a ratio greater than 1 in the specially orthotropic plate literature are incorrect); when natural boundary conditions are considered a generalized Poisson's ratio is introduced. Thus the buckling results are valid for any specially orthotropic material; hence the curves presented in the text are generic rather than specific. The solution trends are twofold; the buckling coefficients decrease with decreasing generalized rigidity ratio and, when applicable, they decrease with increasing generalized Poisson's ratio. Since the isotropic plate is one limiting case of the above analysis, it is also true that isotropic buckling coefficients decrease with increasing Poission's ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.