Abstract

We study a new method to synthesize high-frequency complex microwave and millimeter-wave pulses using dispersion, Kerr effect, and group velocity delay in optical fiber systems. The profile of the generated pulses can be controlled by changing the parameters of the optical system. Nonlinear propagation effect in fibers can be used to generate electrical pulses with an extremely broad spread spectrum. Soliton trapping can be used to generate electrical pulses with a controllable frequency. Implicit results are given when dispersion or nonlinear effect can be neglected. Generation of electrical pulses with a controllable microwave frequency is demonstrated experimentally using a Mach-Zehnder interferometer and a chirped fiber Bragg grating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call