Abstract

The noise emitted by an overexpanded round jet at a Mach number of 3.3 and a Reynolds number of 105, computed in a previous study using large-eddy simulation (LES), is investigated. In a first step, the non-linear sound propagation effects are quantified by performing two far-field wave extrapolations from the LES near-field data. The extrapolations are carried out by solving the linearized Euler equations in one case and the full Euler equations in the other, without atmospheric absorption, up to a distance of 240 radii from the jet nozzle exit. The non-linear effects are shown to be quite significant, resulting in a series of N-shaped waves in the pressure signals, and in weaker mid-frequency components and stronger high-frequency components in the spectra. Close to the peak directivity radiation angle, for instance, they lead to about a 8 dB loss and a 6 dB gain at the Strouhal numbers of 0.2 and 1, respectively. In a second step, noise generation mechanisms are discussed by calculating correlations between far-field pressure fluctuations and turbulent quantities in the jet. High levels of correlation are found with the centerline flow fluctuations at the end of the potential core, with the shear-layer flow fluctuations over a large axial distance, and with the centerline density fluctuations between the 3rd and the 5th shock cells. They are attributed to the intermittent intrusion of low-speed vortical structures in the potential core, to the supersonic convection of turbulent structures, and to the shock motions at the screech tone frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call