Abstract

Abstract This paper considers a backward problem on a heat equation with a fractional Laplacian. It is not easy to solve a backward heat equation directly. This problem is a well-known ill-posed problem. In order to consider a backward heat equation with a fractional Laplacian, we apply the N-th power of the Dirichlet-Laplacian and small parameters to regularize the equation. This method is called a quasi-reversibility method. We use the generalized quasi-reversibility method to change the backward heat system into another system. This paper shows the existence of a strong solution of the modified backward heat system, and derives L 2-estimates of the difference between a solution of the heat equation with the fractional Laplacian and a solution of our system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.