Abstract
Using many moment conditions can improve efficiency but makes the usual generalized method of moments (GMM) inferences inaccurate. Two-step GMM is biased. Generalized empirical likelihood (GEL) has smaller bias, but the usual standard errors are too small in instrumental variable settings. In this paper we give a new variance estimator for GEL that addresses this problem. It is consistent under the usual asymptotics and, under many weak moment asymptotics, is larger than usual and is consistent. We also show that the Kleibergen (2005) Lagrange multiplier and conditional likelihood ratio statistics are valid under many weak moments. In addition, we introduce a jackknife GMM estimator, but find that GEL is asymptotically more efficient under many weak moments. In Monte Carlo examples we find that t-statistics based on the new variance estimator have nearly correct size in a wide range of cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.