Abstract

This paper considers two-step generalized empirical likelihood (GEL) estimation and tests with martingale differences when there is a computationally simple $\sqrt n$-consistent estimator of nuisance parameters or the nuisance parameters can be eliminated with an estimating function of parameters of interest. As an initial estimate might have asymptotic impact on final estimates, we propose general $C(\alpha )$-type transformed moments to eliminate the impact, and use them in the GEL framework to construct estimation and tests robust to initial estimates. This two-step approach can save computational burden as the numbers of moments and parameters are reduced. A properly constructed two-step GEL (TGEL) estimator of parameters of interest is asymptotically as efficient as the corresponding joint GEL estimator. TGEL removes several higher-order bias terms of a corresponding two-step generalized method of moments. Our moment functions at the true parameters are martingales, thus they cover some spatial and time series models. We investigate tests for parameter restrictions in the TGEL framework, which are locally as powerful as those in the joint GEL framework when the two-step estimator is efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.