Abstract

We have developed a local convergence analysis for a general scheme of high-order convergence, aiming to solve equations in Banach spaces. A priori estimates are developed based on the error distances. This way, we know in advance the number of iterations required to reach a predetermined error tolerance. Moreover, a radius of convergence is determined, allowing for a selection of initial points assuring the convergence of the scheme. Furthermore, a neighborhood that contains only one solution to the equation is specified. Notably, we present the generalized convergence of these schemes under weak conditions. Our findings are based on generalized continuity requirements and contain a new semi-local convergence analysis (with a majorizing sequence) not seen in earlier studies based on Taylor series and derivatives which are not present in the scheme. We conclude with a good collection of numerical results derived from applied science problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.