Abstract
The reliance on fossil fuels as a primary global energy source has significantly impacted the environment, contributing to pollution and climate change. A shift towards renewable energy sources, particularly solar power, is underway, though these sources face challenges due to their inherent intermittency. Battery energy storage systems (BESS) play a crucial role in mitigating this intermittency, ensuring a reliable power supply when solar generation is insufficient. The objective of this paper is to accurately predict the solar irradiance for battery operation optimization in microgrids. Using satellite data from weather sensors, we trained machine learning models to enhance solar irradiance predictions. We evaluated five popular machine learning algorithms and applied ensemble methods, achieving a substantial improvement in predictive accuracy. Our model outperforms previous works using the same dataset and has been validated to generalize across diverse geographical locations in Florida. This work demonstrates the potential of AI-assisted data-driven approaches to support sustainable energy management in solar-powered IoT-based microgrids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have