Abstract
Resistive random access memory (RRAM) devices based on metal oxides, organic molecules and inorganic nanocrystals (NCs) have been studied extensively in recent years. Different memory switching mechanisms have been proposed and shown to be closely related to the device architectures. In this work, we demonstrate that the use of an ITO/active layer/InGa structure can yield nonvolatile resistive memory behavior in a variety of active materials, including polymers, organic small molecules, and colloidal NCs. Through the electrode material and thickness-dependent study, we show that the ON state of the devices is associated with filamentary conduction induced by indium diffusion from the ITO electrode, occurring mostly within around 40–50 nm from the ITO/active layer interface. A negative differential resistance (NDR) regime is observed during transition from the ON to OFF state, and is explained by the space charge limited current (SCLC) effect due to hole injection at the ITO/active layer interface. Our study reveals the impact of indium diffusion at the ITO/active layer interface, an important factor that should be taken into consideration when designing thin printed RRAM devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.