Abstract

Chromatic dispersion is one of the main transmission impairments in optical systems with high bit rates, because the dispersion limit scales with the square of the data rate. Optical delay-line filters can be used to compensate dispersion and dispersion slope. They can be designed as feedforward finite-impulse response filters or as all-pass infinite-impulse response filters. Due to the time-variant property of the dispersion, those filters have to be adaptive, which requires fast and reliable calculation of the filter coefficients. In this paper, a new approach to calculate filter coefficients by applying analytical methods is presented. Design examples are given, and the filter performance is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.