Abstract
In vitro endothelialization of small-diameter synthetic vascular prostheses confluently lined with cultured autologous endothelial cells (ECs) before implantation has been shown to increase their patency. Many authors have studied the effects of shear stress on EC gene response seeded on various substrates showing different gene expression profiles according to cell type, flow times, or shear type with different molecular biology techniques, but few studies have reported any EC gene response to shear stress when cells are seeded on vascular grafts. The purpose of this in vitro study was to investigate whether ECs were able to transduce shear stress at the level of the nucleus. Human saphenous vein ECs were seeded on glass slides coated with gelatin or fibrin glue or on 6-mm fibrin-glue-coated grafts. Then cells were exposed to 12 dyn/cm(2) for 4 h and ribonucleic acid (RNA) were extracted. The relative messenger RNA (mRNA) expression was studied using real-time quantitative polymerase chain reaction for the following mRNAs: von Willebrand Factor, tissue-plasminogen activator, CD31, vascular endothelial (VE)-cadherin, beta(1) integrin, and vascular endothelial growth factor receptor type 2. From parallel flow chambers, results have shown similar EC gene response on gelatin and fibrin glue under laminar shear stress with downregulation of prothrombotic genes, as well as upregulation of nonthrombotic genes and upregulation of adhesion molecules such as VE-cadherin, but some discrepancies are noted, with a downregulation of CD31 and kinase insert domain receptor (KDR) for the former, without significant variation for the latter. In comparison, results show upregulation of tissue type plasminogen activator gene and downregulation of KDR, VE-cadherin, and beta(1) integrin genes in ECs lining grafts. To conclude, the major finding of our study is to show that human saphenous vein ECs seeded on fibrin glue (in planar flow chambers or in tubular grafts) can be regulated using shear stress via gene expression changes in a nonthrombotic way.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have