Abstract

The gate oxide integrity of different thin films (silicon dioxide, silicon nitride, and hafnium oxide) was analyzed by constant voltage stress (CVS) at the nanoscale using conductive atomic force microscopy (cAFM) with the probe tip directly in contact to the dielectric layer. The results were evaluated assuming a Weibull failure distribution for the dielectrics under voltage stress, and a good fit was obtained for the measurement data. This indicates that CVS measurements at the nanoscale can be applied for inline characterization of as-deposited dielectrics without the need for gate electrodes. In addition, time-to-breakdown extracted from the CVS using cAFM was compared to data retrieved from CVS measurements using conventional current-voltage measurements on samples with gate electrodes. In particular, area scaling of CVS data over eight orders of magnitude using cAFM was performed for the first time. The evaluation indicates a decent match between macroscopic and nanoscale CVS measurements for the hafnium oxide and silicon dioxide samples. In contrast, significant discrepancies are evident for the silicon nitride samples, which may be related to charge trapping effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.