Abstract

Targeting the development of a silicon carbide (SiC) inverter for electric vehicle/hybrid electric vehicle (EV/HEV) applications, the design considerations of the gate driver for the adopted SiC metal-oxide-semiconductor field-transistor (MOSFET) power modules are presented. Given the system power density requirement, the gate driver design challenges for the commercial off-the-shelf (COTS) SiC modules are identified, analyzed, and tackled with proposed solutions. To accomplish such design with the constraint of limited layout space, a single chip MAX 13256 (3 mm×3 mm) enabled high frequency link based isolated bias supply structure is proposed for each six-pack module. Moreover, the gate driver design guidelines for module phase-leg parallel operation are introduced with a comparison study confirming the printed circuit board (PCB) layout effectiveness for electromagnetic interference (EMI) mitigation. Experimental validation is conducted on the traction inverter prototype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.