Abstract

In this paper, gate all around (GAA) MOSFET with vacuum gate dielectric is proposed for the first time for improved hot carrier reliability and RF performance. Analog and RF performance of the GAA MOSFET with vacuum gate dielectric (GAA VacuFET) is compared with conventional GAA MOSFET with SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> dielectric, and it is found that GAA VacuFET is superior to SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> dielectric for RF high-speed applications and more immune to the hot carrier damage because of low electric field at the drain side but it has a serious drawback of low on-current and transconductance as compared to SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> dielectric. In order to enhance the on current and transconductance of GAA VacuFET, Gate Electrode engineering and channel doping engineering are used. An analytical model is developed for dual material gate graded channel GAA MOSFET with vacuum gate dielectric (DMG GC VacuFET) and the model is verified with the simulated results. Incorporation of DMG and GC not only enhances digital and analog RF performance of GAA VacuFET but also hot carrier reliability is improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.