Abstract

High-speed disperse multiphase flows are present in numerous environmental and engineering applications with complex interactions between turbulence, shock waves, and particles. Compared with its incompressible counterpart, compressible two-phase flows introduce new scales of motion that challenge simulations and experiments. This review focuses on gas–particle interactions spanning subsonic to supersonic flow conditions. An overview of existing Mach-number-dependent drag laws is presented, with origins from eighteenth-century cannon firings and new insights from particle-resolved numerical simulations. The equations of motion and phenomenology for a single particle are first reviewed. Multiparticle systems spanning dusty gases to dense suspensions are then discussed from numerical and experimental perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call