Abstract

We show that every finitely generated Artin–Tits group admits a finite Garside family, by introducing the notion of a low element in a Coxeter group and proving that the family of all low elements in a Coxeter system (W,S) with S finite includes S and is finite and closed under suffix and join with respect to the right weak order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.