Abstract

We report on a numerical study of disorder effects in 2D d-wave BCS superconductors. We compare exact numerical solutions of the Bogoliubov-de Gennes (BdG) equations for the density of states rho(E) with the standard T-matrix approximation. Local suppression of the order parameter near impurity sites, which occurs in self-consistent solutions of the BdG equations, leads to apparent power-law behavior rho(E) approximately |E|(alpha) with nonuniversal alpha over an energy scale comparable to the single-impurity resonance energy Omega(0). We show that the novel effects arise from static spatial correlations between the order parameter and the impurity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.