Abstract

BackgroundGemcitabine (GEM) resistance is the primary reason why combination chemotherapy is limited in triple-negative breast cancer (TNBC). Ganoderic acid D (GAD), a natural triterpenoid compound obtained from Ganoderma lucidum, has been shown to have antitumor activities. However, whether GAD can reverse GEM resistance in TNBC requires further investigation. PurposeThis study investigated whether and how GAD could reverse GEM resistance in TNBC as an antitumor adjuvant. MethodsThe effects of GAD on cell proliferation, cell cycle, and glycolysis were studied in vitro using a GEM-resistant (GEM-R) TNBC cell model. We enriched key pathways affected by GAD using proteomics techniques. Western blotting and qPCR were used to detect the expression of glycolysis-related genes after GAD treatment. A mouse resistance model was established using GEM-R TNBC cells, and hematoxylin-eosin staining and immunohistochemistry were used to assess the role of GAD in reversing resistance in vivo. ResultsCellular functional assays showed that GAD significantly inhibited proliferation and glucose uptake in GEM-R TNBC cells. GAD reduces HIF-1α accumulation in TNBC cells under hypoxic conditions through the ubiquitinated protease degradation pathway. Mechanistically, GAD activates the p53/MDM2 pathway, promoting HIF-1α ubiquitination and proteasomal degradation and downregulating HIF-1α-dependent glycolysis genes like GLUT1, HK2, and PKM2. Notably, GAD combined with gemcitabine significantly reduced the growth of GEM-R TNBC cells in a subcutaneous tumor model. ConclusionsThis study reveals a novel antitumor function of GAD, which inhibits glycolysis by promoting HIF-1α degradation in GEM-R TNBC cells, offering a promising therapeutic strategy for TNBC patients with GEM resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call