Abstract

BackgroundGefitinib (Gef) is an EGFR inhibitor and its resistance in triple negative breast cancer (TNBC) is a critical concern. E3 ubiquitin ligases are pivotal for mediation of TNBC metastasis. However, the role of E3 ubiquitin ligase Ring Finger Protein 180 (RNF180) in EGFR inhibitor resistance of TNBC remains unclear. This study was performed to investigate how the E3 ubiquitin protein ligase RNF180 manipulated the growth, metastasis, and resistance to Gef of TNBC cells. MethodsTNBC tissues were harvested for detection of RNF180 and RAD51 expression. Gef-resistant cell lines were constructed. Next, gain- and loss-of-function assays were implemented in TNBC cell lines and Gef-resistant cell lines, followed by assessment of TNBC cell biological processes. IP assay was performed to detect the interaction between RNF180 and RAD51. Drug resistance-related genes (MRP1, BCRP, and MDR1) were evaluated by Western blot and RT-qPCR. The tumorigenesis was performed in nude mice to observe the growth and metastasis of TNBC in vivo. ResultsRAD51 was highly expressed in TNBC tissues and cells, while RNF180 was poorly expressed. Mechanistically, RNF180 degraded RAD51 by ubiquitination. Overexpression of RNF180 or silencing of RAD51 suppressed proliferation, invasion, migration, and Gef resistance of TNBC cells and accelerated their apoptosis. Upregulation of RNF180 or downregulation of RAD51 diminished tumorigenesis and Gef resistance of TNBC in mice. ConclusionRNF180 degraded RAD51 by ubiquitination, thereby inhibiting TNBC cell growth and metastasis and sensitizing TNBC cells to Gef.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call