Abstract
Auditory steady-state response (ASSR) abnormalities in the 40-Hz (gamma band) frequency have been observed in schizophrenia and rodent studies of N-methyl D-aspartate glutamate receptor (NMDAR) hypofunction. However, the extent to which 40-Hz ASSR abnormalities in schizophrenia resemble deficits in 40-Hz ASSR induced by acute administration of ketamine, an NMDAR antagonist, is not yet known. To address this knowledge gap, we conducted parallel EEG studies: a crossover, placebo-controlled ketamine drug challenge study in healthy subjects (Study 1) and a comparison of patients with schizophrenia and healthy controls subjects (Study 2). Time-frequency analysis of the ASSR was used to calculate baseline, broadband gamma power, evoked power, total power, phase-locking factor, and phase-locking angle. Relative to healthy controls, schizophrenia patients exhibited increases in pre-stimulus broadband gamma power and reductions in 40-Hz ASSR evoked power, total power, and phase-locking factor, replicating prior studies. However, we failed to replicate previous findings of 40-Hz ASSR phase delay in schizophrenia. Relative to placebo, ketamine: increased pre-stimulus broadband gamma power, reduced 40-Hz ASSR evoked power, total power, and phase-locking factor, and advanced the phase of the 40-Hz ASSR. Normalized by their respective control groups/conditions, direct comparison of these measures between schizophrenia and ketamine data only revealed significant differences in phase, supporting the role of NMDAR hypofunction in mediating gamma oscillation abnormalities in schizophrenia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have