Abstract

The positron‐emitting radionuclide, fluorine‐18, is used to radiolabel molecules to develop tracers for diagnostic imaging with positron‐emission tomography. There is growing interest in the potential of using strong coordinate bonds between electropositive Ga(III) and electronegative fluoride (≈ 557 kJ/mol) to provide new methods of incorporating fluorine‐18 into molecules. The potential of gallium(III) complexes with acyclic pentadentate bispicolinic acid containing ligands (H2L1–3) to form ternary complexes with fluoride, [GaL1–3F] was investigated with a view to developing new methods for fluorine‐18 radiolabelling. A solid‐phase peptide synthesis approach was used to produce a bispicolinic acid chelator with a lysine residue. Characterisation of [GaL1X] (X = OH, Cl, F) by X‐ray crystallography revealed that L1 acted as dianionic N2O2 donor to the Ga(III) with the fifth site occupied by a monodentate anion (OH–, Cl– or F–). Despite its high stability in aqueous mixture and [D6]DMSO and the straightforward synthesis of [GaL1F], it was only possible to form the radioactive analogue [18F][GaL1F] in low radiochemical yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.