Abstract
A systematic investigation of gain-clamped semiconductor optical amplifiers (GC-SOAs) based on the second-order index-coupled DFB gratings is carried out by way of simulation. In particular, we focus on the main effects of the radiation loss caused by the first-order diffraction of the gratings on the amplifier performance. The magnitude of the total complex coupling coefficient is the main factor to determine the level of gain clamping. We demonstrate that a high-performance GC-SOA can be realized by using purely loss-coupled second-order DFB gratings with more relaxed tolerance on grating strength and period. It is shown that, in the presence of weak reflection-related coupling, the parasitic radiation loss associated with the second-order grating always helps to expand the linear amplification region and to reduce the longitudinal spatial hole burning along the cavity. Further, we demonstrate through comparison that the GC-SOAs have higher saturation power and much shorter carrier lifetime than the conventional SOAs. An improved design by longitudinal variation of the grating duty cycle is proposed such that the noise performance of the amplifier can be enhanced without much sacrifice on the linear amplification regime.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have