Abstract

A time-domain model is implemented for gain-clamped semiconductor optical amplifiers (GC-SOAs) based on a combination of the separated traveling-wave equations and effective Bloch equations. The key feature of this model lies in its capability of handling the lasing–signal, signal–signal, and signal–noise interactions over a broad wavelength band. Therefore, various nonlinear phenomena such as the cross-gain saturation (XGS) and nondegenerate four-wave mixing (ND-FWM) can readily be captured. After being implemented and validated, this model is applied to the simulation of GC-SOA dynamic behaviors such as the channel crosstalk and intermodulation distortion (IMD). Simulation results show that the third-order IMD can be effectively suppressed by a gain-clamping lasing mode in GC-SOAs in comparison with that in conventional SOAs. The channel crosstalk can also be suppressed to some extent in GC-SOAs, but not as effectively. Other than a homogeneous reduction, the gain-clamping in GC-SOAs does not change the dependence of the channel crosstalk and IMD on the input signal power and channel spacing. It is also shown that the channel crosstalk, unlike the IMD, cannot be efficiently reduced by enlarging the channel spacing even in GC-SOAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.