Abstract

In the current model of gamma-aminobutyric acid (GABA) B receptor function, there is a requirement for GABA-B(1/2) heterodimerisation for targetting to the cell surface. However, different lines of evidence suggest that the GABA-B(1) subunit can form a functional receptor in the absence of GABA-B(2). We observed coupling of endogenous GABA-B(1) receptors in the DI-TNC1 glial cell line to the ERK pathway in response to baclofen even though these cells do not express GABA-B(2). GABA-B(1A) receptors were also able to mediate a rapid, transient, and dose-dependent activation of the ERK1/2 MAP kinase pathway when transfected alone into HEK 293 cells. The response was abolished by G(i/o) and MEK inhibition, potentiated by inhibitors of phospholipase C and protein kinase C and did not involve PI-3-kinase activity. Finally, using bioluminescence resonance energy transfer and co-immunoprecipitation, we show the existence of homodimeric GABA-B(1A) receptors in transfected HEK293 cells. Altogether, our observations show that GABA-B(1A) receptors are able to activate the ERK1/2 pathway despite the absence of surface targetting partner GABA-B(2) in both HEK 293 cells and the DI-TNC1 cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call