Abstract
This paper studies the fuzzy modeling problem and the fault detection and diagnosis (FDD) algorithm for non-Gaussian stochastic distribution systems based on the nonlinear fuzzy filter design. Following spline function approximation for output probability density functions (PDFs), the T-S fuzzy model is built as a nonlinear identifier to describe the dynamic relationship between the control input and the weight vector. By combining the designed filter and the threshold value, the fault in T-S weight model can be detected and the stability of error system can also be guaranteed. Moreover, the novel adaptive fuzzy filter based on stochastic distribution function is designed to estimate the size of system fault. Finally, the simulation results can well verify the effectiveness of the proposed algorithm for the constant fault and the time-varying fault, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have