Abstract

Our group assays natural products that are less toxic and more effective than available nitroheterocycles as promising therapeutic options for patients with Chagas disease. Our previous study reported the trypanocidal activity of eupomatenoid-5, a neolignan isolated from the leaves of Piper regnellii var. pallescens, against the three main parasitic forms of Trypanosoma cruzi. The present study further characterizes the biochemical and morphological alterations induced by this compound to elucidate the mechanisms of action involved in the cell death of T. cruzi. We show that eupomatenoid-5 induced oxidative imbalance in the three parasitic forms, especially trypomastigotes, reflected by a decrease in the activity of trypanothione reductase and increase in the formation of reactive oxygen species (ROS). A reduction of mitochondrial membrane potential was then triggered, further impairing the cell redox system through the production of more ROS and reactive nitrogen species. Altogether, these effects led to oxidative stress, reflected by lipid peroxidation and DNA fragmentation. These alterations are key events in the induction of parasite death through various pathways, including apoptosis, necrosis, and autophagy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.