Abstract

Nearly two million people die each year from fungal infections. Additionally, fungal crop infections jeopardize the global food supply. The use of 254 nm UVC radiation from mercury vapor lamps is a disinfection technique known to be effective against all microorganisms, and there are surveys of published UVC sensitivities. However, these mainly focus on bacteria and viruses. Therefore, a corresponding overview for fungi will be provided here, including far-UVC, UVB, UVA, and visible light, in addition to the conventional 254 nm UVC inactivation. The available literature was searched for photoinactivation data for fungi in the above-mentioned spectral ranges. To standardize the presentation, the mean log-reduction doses were retrieved and sorted by fungal species, spectral range, wavelength, and medium, among others. Additionally, the median log-reduction dose was determined for fungi in transparent liquid media. Approximately 400 evaluable individual data sets from publications over the last 100 years were compiled. Most studies were performed with 254 nm radiation from mercury vapor lamps on Aspergillus niger, Candida albicans, and Saccharomyces cerevisiae. However, the data found were highly scattered, which could be due to the experimental conditions. Even though the number of individual data sets seems large, many important fungi have not been extensively studied so far. For example, UV irradiation data does not yet exist for half of the fungal species classified as "high priority" or "medium priority" by the World Health Organization (WHO). In addition, researchers should measure the transmission of their fungal suspensions at the irradiation wavelength to avoid the undesirable effects of either absorption or scattering on irradiation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.