Abstract
We investigated the optimal performance of an irreversible Stirling-like heat engine described by both overdamped and underdamped models within the framework of stochastic thermodynamics. By establishing a link between energy dissipation and Wasserstein distance, we derived the upper bound of maximal power that can be delivered over a complete engine cycle for both models. Additionally, we analytically developed an optimal control strategy to achieve this upper bound of maximal power and determined the efficiency at maximal power in the overdamped scenario.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have