Abstract
Drylands' poly-extreme conditions limit edaphic microbial diversity and functionality. Furthermore, climate change exacerbates soil desiccation and salinity in most drylands. To better understand the potential effects of these changes on dryland microbial communities, we evaluated their taxonomic and functional diversities in two Southern African dryland soils with contrasting aridity and salinity. Fungal community structure was significantly influenced by aridity and salinity, while Bacteria and Archaea only by salinity. Deterministic homogeneous selection was significantly more important for bacterial and archaeal communities' assembly in hyperarid and saline soils when compared to those from arid soils. This suggests that niche partitioning drives bacterial and archaeal communities' assembly under the most extreme conditions. Conversely, stochastic dispersal limitations drove the assembly of fungal communities. Hyperarid and saline soil communities exhibited similar potential functional capacities, demonstrating a disconnect between microbial structure and function. Structure variations could be functionally compensated by different taxa with similar functions, as implied by the high levels of functional redundancy. Consequently, while environmental selective pressures shape the dryland microbial community assembly and structures, they do not influence their potential functionality. This suggest that they are functionally stable, and that they could be functional even under harsher conditions, such as those expected with climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.