Abstract

Long-term impacts of metal contamination derived from sewage sludge on soil microbial communities have been widely evaluated, but confounding effects have made it difficult to draw firm conclusions and thus to advise on safe metal limits. Here we used Multiplex-terminal restriction length fragment polymorphism (M-TRFLP) to assess the long-term impact of sludge-borne Zn and Cu contamination on the structure of bacterial, fungal and archaeal communities across seven different soils at metal levels relevant to current guideline limits. Despite strong effects of site on microbial community structure, analysis of similarity (ANOSIM) demonstrated a small but significant effect of Zn on bacteria (P < 0.001), archaea (P < 0.001), and fungi (P < 0.001). Significant effects of Cu on bacteria (P < 0.001), archaea (P < 0.001) and fungi (P < 0.001) were also observed. Several bacterial and fungal T-RFs were identified as responding to Zn or Cu. For example the bacterial T-RF 72 was negatively correlated with Zn and Cu, and T-RF 259 was positively correlated with Zn. Attempts to identify these bacterial markers of Zn and Cu contamination suggest a negative impact of Cu on Acidobacteria in arable soils. These results demonstrate for the first time, that despite a strong influence of site on microbial community structure, effects of Zn and Cu derived from sewage sludge can be detected as shifts in bacterial, fungal and archaeal communities indicating a common response more than 11 years after sludge addition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.