Abstract

Suction feeding in teleost fish is a power-dependent behavior, requiring rapid and forceful expansion of the orobranchial cavity by the hypobranchial and trunk muscles. To increase power production for expansion, many species employ in-series tendons and catch mechanisms to store and release elastic strain energy. Suction feeding sharks such as Chiloscyllium plagiosum lack large in-series tendons on the hypobranchials, yet two of the hypobranchials, the coracohyoideus and coracoarcualis (CH and CA; hyoid depressors), are arranged in-series, and run deep and parallel to a third muscle, the coracomandibularis (CM, jaw depressor). The arrangement of the CH and CA suggests that C. plagiosum is using the CH muscle rather than a tendon to store and release elastic strain energy. Here we describe the anatomy of the feeding apparatus, and present data on hyoid and jaw kinematics and fascicle shortening in the CM, CH and CA quantified using sonomicrometry, with muscle activity and buccal pressure recorded simultaneously. Results from prey capture show that prior to jaw and hyoid depression the CH is actively lengthened by shortening of the in-series CA. The active lengthening of the CH and pre-activation of the CH and CA suggest that the CH is functioning to store and release elastic energy during prey capture. Catch mechanisms are proposed involving a dynamic moment arm and four-bar linkage between the hyoidiomandibular ligament (LHML), jaws and ceratohyals that is influenced by the CM. Furthermore, the LHML may be temporarily disengaged during behaviors such as bite processing to release linkage constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call