Abstract

Abstract It is important to evaluate the deformation and failure of sandstone in the foundation engineering of coast, river bank and lake shore. While the deformation and failure of sandstone is a comprehensive result of energy release and dissipation, and energy release is the internal reason which leads to global failure of the sandstone. The experimental analysis is conducted on the character of energy revolution of the sandstone specimen by rating loading and unloading, and the catastrophe model is followed in analyzing elastic strain energy accumulation and release in rock deformation and failure. The index based on elastic energy release is proposed to assess the rock brittleness. It is found that increasing water content is to relieve energy release and catastrophe failure of the rock specimen, and weakening the capacity of elastic energy storage. The peak and residual values of elastic energy are raised as the confining pressure increases, and the post-peak released energy decreases progressively. The confining pressure strengthens energy storage and inhibits energy release of the rock specimen, and saturation of rock will weaken this inhibit effect. The brittleness index decreases with increasing confining pressure as the rock specimen transforming from brittle to ductile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call