Abstract

AbstractPhotonic materials based on metal halide perovskites undergo rapid development owing to their unique optical properties and facile synthesis. Concurrently, there is also a growing interest in integrated photonics that can combine several elements on one chip. Nowadays technologies of integrated photonics are based on the traditional mask lithography combined with physical or chemical deposition methods. In this study, the possibility of facile fabrication of a simple pair of photonic elements is addressed, such as a microresonator with an outcoupling waveguide by means of inkjet printing on a glass substrate covered by a layer of polydimethylsiloxane (PDMS). The printed laser has revealed an appreciably high laser emission with a Q‐factor of 3300 and a threshold excitation fluence of 34 µJ·cm−2. The outcoupling waveguide has demonstrated the capability to transfer a reasonable part of the emitted radiation. The experimental results with a numerical simulation based on an appropriate physical model are also rationalized. Thus, the study points out a perspective for integrated photonics to be possibly implemented with this relatively cheap, flexible, and scalable fabrication method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.