Abstract

AbstractThe effects of ZrO2 particle size (55 nm and 113 nm) and borothermal reduction routes (borothermal reduction with water‐washing (BRW) and in situ 5 mol% TaB2 solid solution, BRS) on synthesis and densification of ZrB2 were investigated. Irrespective of reduction routes, the use of finer ZrO2 powders as raw materials resulted in finer ZrB2 powders. Compared to the powders derived from BRS, the powders derived from BRW had smaller particle size with higher oxygen content, especially the powders synthesized with finer ZrO2. Irrespective of ZrO2 particle size, the oxygen contents of ZrB2 powders prepared by the BRS route were similar. Because of the high oxygen content, the ZrB2 ceramics synthesized by BRW with finer ZrO2 demonstrated the lowest relative density (90.5%), which resulted in the lowest Vickers’ hardness (14.2 ± 0.9 GPa). Due to the low oxygen content and small particle size of ZrB2 powders, fully dense ZrB2 ceramics (relative density: 99.6%) with highest Vickers’ hardness (16.0 ± 0.2 GPa) were achieved by BRS with finer ZrO2 powders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.