Abstract

The RXN for Chemistry project, initiated by IBM Research Europe - Zurich in 2017, aimed to develop a series of digital assets using machine learning techniques to promote the use of data-driven methodologies in synthetic organic chemistry. This research adopts an innovative concept by treating chemical reaction data as language records, treating the prediction of a synthetic organic chemistry reaction as a translation task between precursor and product languages. Over the years, the IBM Research team has successfully developed language models for various applications including forward reaction prediction, retrosynthesis, reaction classification, atom-mapping, procedure extraction from text, inference of experimental protocols and its use in programming commercial automation hardware to implement an autonomous chemical laboratory. Furthermore, the project has recently incorporated biochemical data in training models for greener and more sustainable chemical reactions. The remarkable ease of constructing prediction models and continually enhancing them through data augmentation with minimal human intervention has led to the widespread adoption of language model technologies, facilitating the digitalization of chemistry in diverse industrial sectors such as pharmaceuticals and chemical manufacturing. This manuscript provides a concise overview of the scientific components that contributed to the prestigious Sandmeyer Award in 2022.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.