Abstract
The scarcity and class imbalance of training data are known issues in current rumor detection tasks. We propose a straight-forward and general-purpose data augmentation technique which is beneficial to early rumor detection relying on event propagation patterns. The key idea is to exploit massive unlabeled event data sets on social media to augment limited labeled rumor source tweets. This work is based on rumor spreading patterns revealed by recent rumor studies and semantic relatedness between labeled and unlabeled data. A state-of-the-art neural language model (NLM) and large credibility-focused Twitter corpora are employed to learn context-sensitive representations of rumor tweets. Six different real-world events based on three publicly available rumor datasets are employed in our experiments to provide a comparative evaluation of the effectiveness of the method. The results show that our method can expand the size of an existing rumor data set nearly by 200% and corresponding social context (i.e., conversational threads) by 100% with reasonable quality. Preliminary experiments with a state-of-the-art deep learning-based rumor detection model show that augmented data can alleviate over-fitting and class imbalance caused by limited train data and can help to train complex neural networks (NNs). With augmented data, the performance of rumor detection can be improved by 12.1% in terms of F-score. Our experiments also indicate that augmented training data can help to generalize rumor detection models on unseen rumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.