Abstract
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060. This study explores innovative approaches to convert PW into high-value carbon nanomaterials (CNMs) such as graphene, carbon nanotubes (CNTs), and other advanced carbon structures. Various methods including pyrolysis, arc discharge, catalytic degradation, and laser ablation have been investigated in transforming PW into CNMs. However, four primary methodologies are discussed herein: thermal decomposition, chemical vapor deposition (CVD), flash joule heating (FJH), and stepwise conversion. The scalability of the pathways discussed for industrial applications varies significantly. Thermal decomposition, particularly pyrolysis, is highly scalable due to its straightforward setup and cost-effective operation, making it suitable for large-scale waste processing plants. It also produces fuel byproducts that can be used as an alternative energy source, promoting the concept of energy recovery and circular economy. CVD, while producing high-quality carbon materials, is less scalable due to the high cost and required complex equipment, catalyst, high temperature, and pressure, which limits its use to specialized applications. FJH offers rapid synthesis of high-quality graphene using an economically viable technique that can also generate valuable products such as green hydrogen, carbon oligomers, and light hydrocarbons. However, it still requires optimization for industrial throughput. Stepwise conversion, involving multiple stages, can be challenging to scale due to higher operational complexity and cost, but it offers precise control over material properties for niche applications. This research demonstrates the growing potential of upcycling PW into valuable materials that align with global sustainability goals including industry, innovation, and infrastructure (Goal 9), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12). The findings underscore the need for enhanced recycling infrastructure and policy frameworks to support the shift toward a circular economy and mitigate the global plastic crisis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have