Abstract

The topological spin-Hall effect causes different spins to propagate in opposite directions based on Hermitian physics. The non-Hermitian skin effect causes the localization of a large number of modes of a system at its edges. Here we propose a system based on exciton-polariton elliptical micropillars hosting both the effects. The polarization splitting of the elliptical micropillars gives rise to the topological spin-Hall effect in a one dimensional lattice. When a circularly polarized external incoherent laser is used to imbalance effective decay rates of the different spin polarizations, the system transits to a non-Hermitian regime showing the skin effect. These effects have implications for robust polariton transport as well as the deterministic formation of multiply charged vortices and persistent currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.